

Shurpali, N.J., Biasi, C. & Martikainen, P.J. University of Kuopio, Finland

University of Kuopio Research Group in Biogeochemistry

Greenhouse gas scenario

- ❖ Current CO₂ levels in the atmosphere 387 ppm.
- This is almost 40 per cent since the industrial revolution.
- From 1970 to 2000, the concentration rose by about 1.5 ppm each year.
- ❖ The annual mean CO₂ growth rate for 2007 was 2.14 ppm.
- Primarily because of human intervention combustion fossil fuels
- Urgent need to reduce these high levels to some lower reference levels.

Mitigation strategies

Increase the share of renewable energy sources in the total energy consumption.

Bioenergy from Biomass is one of the renewable sources.

EU targets for Finland

- Increase renewable energy's share of final consumption by about 9.5 per cent compared to 2005.
- ❖ In 2005, renewable energy had a 28.5 per cent share. The target for 2020 is 38 per cent.
- Finland must achieve a 16 per cent GHG reduction by 2020, from 2005 levels.

Bioenergy cultivation in Finland

- In Finland, the cultivation of reed canary grass as a bioenergy crop on organic soils is fast increasing.
- Presently cultivated on about 20 thousand hectares.
- Expected to increase to 100 thousand hectares by 2015.
- It thrives well under low temperature, high moisture and humus rich soil conditions.

Land use change issues in Finland

- Natural peatlands drained for forestry, agriculture and peat extraction
- Drained organic soils are environmentally unfriendly.
- ❖ They have been known to be persistent sources of CO₂ to the atmosphere.
- ❖ Always a source of CO₂ when left abandoned, afforested (nobody knows the full story in this case), cultivated with seasonal crops such as barley, wheat or potato or grasses.
- Some studies have suggested that such soils should be excluded totally from biomass cultivation for bioenergy.

Research Objective

How feasible it is to cultivate RCG on an organic soil?

What climatic impact will the carbon balance resulting from such a cultivation will have on the environment?

Instantaneous Flux = ws = wc for CO_2 = wq for water vapor = $\rho_a c_p wT$ for sensible heat Mean Hourly Flux = Time average of instantaneous flux = ws

 $=\overline{\mathbf{wc}}$ for CO_2

= wq for water vapor

 $= \rho_a c_p \overline{wT}$ for sensible heat

From a fraction of a second to annual and decadal time scales

30 min fluxes

Daily exchange rates

Annual patterns

Daily cumulative RCG CO₂ balance

Different crop management operations considered in the LCA of RCG cultivation system and their percent contribution to the total management related CO₂ emissions

A comparison of Net GHG emissions (kg, CO_2 equivalents per MWh of energy) from RCG cultivation and Coal

Soil Carbon Dynamics

Question:

Does RCG cultivation increase soil carbon loss as CO₂? (is there a priming effect?)

Soil carbon sequestration is an important component in bioenergy systems

Problem:

- Against huge background of carbon in soils small changes are difficult to detect
- Analysis of soil respiration is complicated by the contribution of roots

Solution:

 Cultivated cut-away peat offers a unique natural tracer to partition sources of respiration (soil vs. plant)

Principle of the Isotopic tracer method

Natural peatland

Huge difference in age (14C content) between plants and soil!!

Ideal opportunity to partition plant vs. soil-derived CO₂ with radiocarbon dating

CO₂ emissions from peat are not increased due to cultivation

- •Priming effect is negligible over the season!!
- •RCG does not stimulate the decomposition of peat
- •Potential for soil carbon sequestration is very high in RCG cultivations with conservative management practice and no-tillage
- •High value as a bioenergy crop

The cut-away peatland functions as the control site to compare soil CO₂ emissions between cultivated and non-cultivated site

